The completeness (in terms of content) of financial documents is a fundamental requirement for investment funds. To ensure completeness, financial regulators spend a huge amount of time for carefully checking every financial document based on the relevant content requirements, which prescribe the information types to be included in financial documents (e.g., the description of shares' issue conditions). Although several techniques have been proposed to automatically detect certain types of information in documents in various application domains, they provide limited support to help regulators automatically identify the text chunks related to financial information types, due to the complexity of financial documents and the diversity of the sentences characterizing an information type. In this paper, we propose FITI, an artificial intelligence (AI)-based method for tracing content requirements in financial documents. Given a new financial document, FITI selects a set of candidate sentences for efficient information type identification. Then, FITI uses a combination of rule-based and data-centric approaches, by leveraging information retrieval (IR) and machine learning (ML) techniques that analyze the words, sentences, and contexts related to an information type, to rank candidate sentences. Finally, using a list of indicator phrases related to each information type, a heuristic-based selector, which considers both the sentence ranking and the domain-specific phrases, determines a list of sentences corresponding to each information type. We evaluated FITI by assessing its effectiveness in tracing financial content requirements in 100 financial documents. Experimental results show that FITI provides accurate identification with average precision and recall values of 0.824 and 0.646, respectively. Furthermore, FITI can detect about 80% of missing information types in financial documents.


翻译:财务文件的完整性(内容方面)是投资资金的基本要求。为了确保完整性,金融监管机构花费大量时间根据相关内容要求仔细检查每份财务文件,其中规定了金融文件中应包含的信息类型(例如,股票问题条件的说明)。虽然提出了若干技术,以自动检测各种应用领域的文件中的某些类型的信息,但由于财务文件的复杂性和资料类型特点的判决书的多样性,它们提供了有限的支持,帮助监管机构自动识别与财务信息类型有关的文本块。在本文件中,我们建议FITI是一种人工智能(AI)方法,用于追查财务文件中的内容要求。根据新的财务文件,FITI选择了一套候选句子,用于高效率的信息类型识别。之后,FITI采用基于规则的和以数据为中心的综合方法,利用信息检索(IR)和机器学习(ML)技术,用以分析词语、句子和与资料类型有关的情况。最后,我们建议FITI,以人工智能智能智能(AI)为基础,以人工智能智能(AI)为基础,以追踪财务文件的准确性要求列表为基础,在每一信息类别中分别评估信息类型和FIT的排序中,我们用直判的顺序判断其排序。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
31+阅读 · 2021年6月12日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Arxiv
0+阅读 · 2021年12月28日
Neural Approaches to Conversational AI
Arxiv
8+阅读 · 2018年12月13日
Arxiv
3+阅读 · 2012年11月20日
VIP会员
相关VIP内容
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员