In this paper, we introduce open parity games, which is a compositional approach to parity games. This is achieved by adding open ends to the usual notion of parity games. We introduce the category of open parity games, which is defined using standard definitions for graph games. We also define a graphical language for open parity games as a prop, which have recently been used in many applications as graphical languages. We introduce a suitable semantic category inspired by the work by Grellois and Melli\`es on the semantics of higher-order model checking. Computing the set of winning positions in open parity games yields a functor to the semantic category. Finally, by interpreting the graphical language in the semantic category, we show that this computation can be carried out compositionally.
翻译:在本文中,我们引入了开放对等游戏,这是对等游戏的一种组合式方法。这是通过给平价游戏的通常概念添加开端来实现的。我们引入了公开对等游戏的类别,该类别使用图形游戏的标准定义。我们还定义了开放式对等游戏的图形语言,将其作为一种道具,最近许多应用程序中都以图形语言使用。我们引入了受Grellois和Melliñes关于更高级模式检查的语义学工作启发的合适的语义分类。计算公开对等游戏中获胜的一组位置,可以给语义类带来一个滑动因素。最后,通过在语义类中解释图形语言,我们展示了这种计算可以以构成方式进行。