We study fair allocation of resources consisting of both divisible and indivisible goods to agents with additive valuations. When only divisible or indivisible goods exist, it is known that an allocation that achieves the maximum Nash welfare (MNW) satisfies the classic fairness notions based on envy. Moreover, the literature shows the structures and characterizations of MNW allocations when valuations are binary and linear (i.e., divisible goods are homogeneous). In this paper, we show that when all agents' valuations are binary linear, an MNW allocation for mixed goods satisfies the envy-freeness up to any good for mixed goods (EFXM). This notion is stronger than an existing one called envy-freeness for mixed goods (EFM), and our result generalizes the existing results for the case when only divisible or indivisible goods exist. When all agents' valuations are binary over indivisible goods and identical over divisible goods (e.g., the divisible good is money), we extend the known characterization of an MNW allocation for indivisible goods to mixed goods, and also show that an MNW allocation satisfies EFXM. For the general additive valuations, we also provide a formal proof that an MNW allocation satisfies a weaker notion than EFM.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
37+阅读 · 2021年8月2日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员