Recent advances in deep learning have enabled the development of automated frameworks for analysing medical images and signals, including analysis of cervical cancer. Many previous works focus on the analysis of isolated cervical cells, or do not offer sufficient methods to explain and understand how the proposed models reach their classification decisions on multi-cell images. Here, we evaluate various state-of-the-art deep learning models and attention-based frameworks for the classification of images of multiple cervical cells. As we aim to provide interpretable deep learning models to address this task, we also compare their explainability through the visualization of their gradients. We demonstrate the importance of using images that contain multiple cells over using isolated single-cell images. We show the effectiveness of the residual channel attention model for extracting important features from a group of cells, and demonstrate this model's efficiency for this classification task. This work highlights the benefits of channel attention mechanisms in analyzing multiple-cell images for potential relations and distributions within a group of cells. It also provides interpretable models to address the classification of cervical cells.


翻译:最近深层学习的进展使分析医学图像和信号的自动化框架得以发展,包括宫颈癌分析。以前的许多工作都侧重于分析孤立的宫颈细胞,或者没有提供足够的方法来解释和理解拟议模型如何在多细胞图像上达成分类决定。这里,我们评估了各种最先进的深层学习模型和多宫颈细胞图像分类的注重框架。我们的目的是提供可解释的深层学习模型,以完成这项任务。我们还通过可视化其梯度来比较这些模型的解释性。我们展示了使用包含多个细胞的图像而不是使用孤立的单细胞图像的重要性。我们展示了从一组细胞中提取重要特征的留置通道关注模型的有效性,并展示了这一模型对分类任务的效率。这项工作突出了在分析多细胞图像时对一组细胞潜在关系和分布的注意机制的益处。我们还提供了可解释的模型,以解决宫颈细胞细胞分类问题。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
16+阅读 · 2018年2月7日
Arxiv
3+阅读 · 2017年12月23日
Arxiv
4+阅读 · 2017年11月13日
VIP会员
相关VIP内容
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Top
微信扫码咨询专知VIP会员