Many endeavors have sought to develop countermeasure techniques as enhancements on Automatic Speaker Verification (ASV) systems, in order to make them more robust against spoof attacks. As evidenced by the latest ASVspoof 2019 countermeasure challenge, models currently deployed for the task of ASV are, at their best, devoid of suitable degrees of generalization to unseen attacks. Upon further investigation of the proposed methods, it appears that a broader three-tiered view of the proposed systems. comprised of the classifier, feature extraction phase, and model loss function, may to some extent lessen the problem. Accordingly, the present study proposes the Efficient Attention Branch Network (EABN) modular architecture with a combined loss function to address the generalization problem...


翻译:许多努力都试图开发反措施技术,作为自动扩音器核查系统(ASV)的强化手段,以便使其更有力地抵御攻击。最新的ASVspoof 2019对抗性措施挑战表明,目前为ASV任务部署的模式充其量是没有适当程度的对无形攻击的概括化。在进一步调查拟议方法后,似乎对拟议系统有更广泛的三层看法。由分类器、特征提取阶段和模型损失功能组成的三层看法,可以在某种程度上减轻问题。因此,本研究报告建议高效注意分支网络模块架构,并结合损失功能来解决普遍化问题。

0
下载
关闭预览

相关内容

损失函数,在AI中亦称呼距离函数,度量函数。此处的距离代表的是抽象性的,代表真实数据与预测数据之间的误差。损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。
专知会员服务
32+阅读 · 2021年6月12日
【AAAI2021-斯坦福】身份感知的图神经网络
专知会员服务
39+阅读 · 2021年1月27日
【经典书】C语言傻瓜式入门(第二版),411页pdf
专知会员服务
52+阅读 · 2020年8月16日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
39+阅读 · 2020年2月21日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
详解GAN的谱归一化(Spectral Normalization)
PaperWeekly
11+阅读 · 2019年2月13日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
5+阅读 · 2018年11月27日
Cascade R-CNN 论文笔记
统计学习与视觉计算组
8+阅读 · 2018年6月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
Arxiv
0+阅读 · 2021年11月7日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
详解GAN的谱归一化(Spectral Normalization)
PaperWeekly
11+阅读 · 2019年2月13日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
5+阅读 · 2018年11月27日
Cascade R-CNN 论文笔记
统计学习与视觉计算组
8+阅读 · 2018年6月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
Top
微信扫码咨询专知VIP会员