BRCA genes, comprising BRCA1 and BRCA2 play indispensable roles in preserving genomic stability and facilitating DNA repair mechanisms. The presence of germline mutations in these genes has been associated with increased susceptibility to various cancers, notably breast and ovarian cancers. Recent advancements in cost-effective sequencing technologies have revolutionized the landscape of cancer genomics, leading to a notable rise in the number of sequenced cancer patient genomes, enabling large-scale computational studies. In this study, we delve into the BRCA mutations in the dbSNP, housing an extensive repository of 41,177 and 44,205 genetic mutations for BRCA1 and BRCA2, respectively. Employing meticulous computational analysis from an umbrella perspective, our research unveils intriguing findings pertaining to a number of critical aspects. Namely, we discover that the majority of BRCA mutations in dbSNP have unknown clinical significance. We find that, although exon 11 for both genes contains the majority of the mutations and may seem as if it is a mutation hot spot, upon analyzing mutations per base pair, we find that all exons exhibit similar levels of mutations. Investigating mutations within introns, while we observe that the recorded mutations are generally uniformly distributed, almost all of the pathogenic mutations in introns are located close to splicing regions (at the beginning or the end). In addition to the findings mentioned earlier, we have also made other discoveries concerning mutation types and the level of confidence in observations within the dbSNP database.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员