Existing methods for Table Structure Recognition (TSR) from camera-captured or scanned documents perform poorly on complex tables consisting of nested rows / columns, multi-line texts and missing cell data. This is because current data-driven methods work by simply training deep models on large volumes of data and fail to generalize when an unseen table structure is encountered. In this paper, we propose to train a deep network to capture the spatial associations between different word pairs present in the table image for unravelling the table structure. We present an end-to-end pipeline, named TSR-DSAW: TSR via Deep Spatial Association of Words, which outputs a digital representation of a table image in a structured format such as HTML. Given a table image as input, the proposed method begins with the detection of all the words present in the image using a text-detection network like CRAFT which is followed by the generation of word-pairs using dynamic programming. These word-pairs are highlighted in individual images and subsequently, fed into a DenseNet-121 classifier trained to capture spatial associations such as same-row, same-column, same-cell or none. Finally, we perform post-processing on the classifier output to generate the table structure in HTML format. We evaluate our TSR-DSAW pipeline on two public table-image datasets -- PubTabNet and ICDAR 2013, and demonstrate improvement over previous methods such as TableNet and DeepDeSRT.
翻译:从相机获取或扫描的表格结构识别(TSR)现有方法,在由嵌套行/列、多线文本和缺失的单元格数据组成的复杂表格中,现有表格结构识别(TSR)方法表现不佳,这是因为当前数据驱动方法仅对大量数据进行深度模型培训,在遇到不可见的表格结构时无法概括。在本文件中,我们提议培训一个深网络,以获取表格图像中显示的不同词对之间的空间关联,以拆解表格结构。我们展示了一个端到端管道,名为TSR-DSAW:通过深空词协会生成的TSR,以结构化格式(如 HTML)为表格图像的数字表示数字表示。鉴于表格作为输入,拟议方法首先使用像 CRAFT 这样的文本检测网络来检测图像中的所有字词,然后用动态程序生成单词对字对字框。这些字面图在个人图像中被突出显示,随后被输入到DenseNet-121的分类,通过深空空间协会,例如,如 HTML等结构中的数字显示2013年的表格格式。最后,我们通过在SMA-S-SL-SL-SL-SDR的表格中,在两个公共-SDR-SDR-SDADSDSDSDA上进行这样的格式上,在SDR-SB-S-S-S-S-S-S-S-S-S-SDR-S-S-S-S-S-SDR-S-S-S-SD-SD-SDR-SD-SDR-SD-SDR-SDR-S-S-S-SDR-S-SDR-S-S-S-S-S-S-S-SD-S-S-S-SDR-SDR-SDR-SDR-SDR-SDR-SDR-SDR-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S