We prove that the Continuum Hypothesis implies that every real number in (0,1] is the Hausdorff dimension of a Hamel basis of the vector space of reals over the field of rationals. The logic of our proof is of particular interest. The statement of our theorem is classical; it does not involve the theory of computing. However, our proof makes essential use of algorithmic fractal dimension--a computability-theoretic construct--and the point-to-set principle of J. Lutz and N. Lutz (2018).
翻译:我们证明,Continuum假设意味着,每个实际数字(0,1)都是哈默尔(Hamel)基础的Hausdorf维度,这是理性领域真实载体空间的哈默尔基。我们证据的逻辑是特别有意义的。我们的理论陈述是古典的;它不涉及计算理论。然而,我们的证据对算法的分形维度-可比较性-理论构造-以及J. Lutz和N. Lutz的点定原则(2018年)进行了必要的利用。