Missing scans are inevitable in longitudinal studies due to either subject dropouts or failed scans. In this paper, we propose a deep learning framework to predict missing scans from acquired scans, catering to longitudinal infant studies. Prediction of infant brain MRI is challenging owing to the rapid contrast and structural changes particularly during the first year of life. We introduce a trustworthy metamorphic generative adversarial network (MGAN) for translating infant brain MRI from one time-point to another. MGAN has three key features: (i) Image translation leveraging spatial and frequency information for detail-preserving mapping; (ii) Quality-guided learning strategy that focuses attention on challenging regions. (iii) Multi-scale hybrid loss function that improves translation of tissue contrast and structural details. Experimental results indicate that MGAN outperforms existing GANs by accurately predicting both contrast and anatomical details.
翻译:在纵向研究中,由于科目辍学或扫描失败,丢失的扫描是不可避免的。在本文中,我们提议了一个深层次学习框架,以预测从获得的扫描中丢失的扫描,满足纵向婴儿研究的需要。由于迅速的对比和结构变化,特别是在出生第一年,对婴儿脑部MRI的预测具有挑战性。我们引入了一个可靠的变形对抗网络(MGAN),将婴儿脑部MRI从一个时间点翻译到另一个时间点。MGAN有三个关键特征:(一) 图像翻译,利用空间和频率信息进行详细保存绘图;(二) 注重挑战地区的高质量指导学习战略。 (三) 多层次混合损失功能,改进组织对比和结构细节的翻译。实验结果表明,MGAN通过准确预测对比和解剖细节,优于现有的GAN。