White matter fiber clustering (WMFC) parcellates tractography data into anatomically meaningful fiber bundles, usually in an unsupervised manner without the need of labeled ground truth data. While widely used WMFC approaches have shown good performance using classical machine learning techniques, recent advances in deep learning reveal a promising direction towards fast and effective WMFC. In this work, we propose a novel deep learning framework for WMFC, Deep Fiber Clustering (DFC), which solves the unsupervised clustering problem as a self-supervised learning task with a domain-specific pretext task to predict pairwise fiber distances. This accelerates the fiber representation learning to handle a known challenge in WMFC, i.e., the sensitivity of clustering results to the point ordering along fibers. We design a novel network architecture that represents input fibers as point clouds and allows the incorporation of additional sources of input information from gray matter parcellation. Thus DFC makes use of the combined white matter fiber geometry and gray matter anatomical parcellation to improve anatomical coherence of fiber clusters. In addition, DFC conducts outlier removal in a natural way by rejecting fibers with low cluster assignment probabilities. We evaluate DFC on three independently acquired cohorts (including data from 220 subjects) and compare it to several state-of-the-art WMFC algorithms. Experimental results demonstrate superior performance of DFC in terms of cluster compactness, generalization ability, anatomical coherence, and computational efficiency. In addition, DFC parcellates whole brain tractography with 50k fibers in about 1.5 minutes, providing a fast and efficient tool for large data analysis.


翻译:白物纤维聚集(WMFC) 包状成份色色色色色色色素数据,通常在不需要贴标签的地面真实数据的情况下,以不受监督的方式,以不受监督的方式,将毛质成解剖纤维包件。虽然广泛使用的纤维代表制方法使用古典机器学习技术表现出了良好的表现,但最近深层学习的进展揭示了快速和有效WMFCC的一个有希望的方向。在这项工作中,我们为WMFC、深纤维聚集(DFC)提出了一个全新的深层次学习框架,解决了未经监督的组群问题,将其作为一种自我监督的骨质化骨质化的骨质化骨质化任务,以预测双纤维纤维距离的距离。此外,DFC在WMCC中,即集成结果的敏感度和直径直径直到纤维的点。我们设计了一个新的网络结构结构,将输入纤维纤维的纤维的纤维化(DFC) 和直径直径直的直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直分析。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月17日
Arxiv
31+阅读 · 2020年9月21日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员