We propose to use techniques from Bayesian inference and deep neural networks to translate uncertainty in seismic imaging to uncertainty in tasks performed on the image, such as horizon tracking. Seismic imaging is an ill-posed inverse problem because of bandwidth and aperture limitations, which is hampered by the presence of noise and linearization errors. Many regularization methods, such as transform-domain sparsity promotion, have been designed to deal with the adverse effects of these errors, however, these methods run the risk of biasing the solution and do not provide information on uncertainty in the image space and how this uncertainty impacts certain tasks on the image. A systematic approach is proposed to translate uncertainty due to noise in the data to confidence intervals of automatically tracked horizons in the image. The uncertainty is characterized by a convolutional neural network (CNN) and to assess these uncertainties, samples are drawn from the posterior distribution of the CNN weights, used to parameterize the image. Compared to traditional priors, it is argued in the literature that these CNNs introduce a flexible inductive bias that is a surprisingly good fit for a diverse set of problems. The method of stochastic gradient Langevin dynamics is employed to sample from the posterior distribution. This method is designed to handle large scale Bayesian inference problems with computationally expensive forward operators as in seismic imaging. Aside from offering a robust alternative to maximum a posteriori estimate that is prone to overfitting, access to these samples allow us to translate uncertainty in the image, due to noise in the data, to uncertainty on the tracked horizons. For instance, it admits estimates for the pointwise standard deviation on the image and for confidence intervals on its automatically tracked horizons.
翻译:我们提议使用贝叶斯的推断和深神经网络的技术,将地震成像的不确定性转化为图像上执行的任务的不确定性,例如地平线跟踪。地震成像由于带宽和孔径限制而是一个不正确反向的问题,这种限制受到噪音和线性错误的阻碍。许多正规化方法,例如变换-域宽度促进,都是为了处理这些错误的不利影响,但是,这些方法有偏向解决方案的风险,并且不提供关于图像空间的不确定性的信息,以及这种不确定性如何影响图像上的某些任务。建议采取系统的方法,将数据中的噪音转化为图像上自动跟踪地平线的置信间隔。这种不确定性的特点是:动态网络和评估这些不确定性,样本是从CNN重量的表面分布到图像上的表面分布。与传统前文相比,这些CNN在图像上引入了一种灵活的描述性偏差,这是一个令人惊讶地优异的例子,因为由于数据在图像上出现的噪音间隔间隔间隔期间隔期间隔期间隔期间隔期,这种方法是用来在图像上进行高层次的变现,在图像上将数据推算,这是一种方法,在图像上,在向前变变的变变变的变的变的变的变的计算方法,这是一种方法,在向方向上,在变的变的变的变的变的变的变的变的变的变压方法是用来,在变的变的变的变的变的变的变的变的变的变的变的变的变的变式方法,在变的变的变的变的变的变的变的变的变式方法是,在变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变式方法是变的变式方法,在变的变的变的变的变式方法,在变的变的变式方法,在的变的变的变式方法,在的变的变的变式方法,在变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式方法是的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变