With the enhancement of Machine Learning, many tools are being designed to assist developers to easily create their Machine Learning models. In this paper, we propose a novel method for auto creation of such custom models for constraint devices using transfer learning without the need to write any machine learning code. We share the architecture of our automatic model creation tool and the CNN Model created by it using pretrained models such as YAMNet and MobileNetV2 as feature extractors. Finally, we demonstrate accuracy and memory footprint of the model created from the tool by creating an Automatic Image and Audio classifier and report the results of our experiments using Stanford Cars and ESC-50 dataset.
翻译:随着机器学习的加强,许多工具正在设计中,以帮助开发者轻松创建其机器学习模式。在本文中,我们提出了一种新颖的方法,用于自动创建这种自定义的限制装置模式,使用转移学习,而无需写入任何机器学习代码。我们分享我们的自动模型创建工具和CNN模式的架构,而CNN模式是由它利用诸如YAMNet和MobileNetV2等预先培训的模型作为特征提取器创建的。最后,我们通过创建自动图像和音频分类器来展示该工具所创建模型的准确性和记忆足迹,并报告我们利用斯坦福汽车和ESC-50数据集进行实验的结果。