Motivated by applications in unsourced random access, this paper develops a novel scheme for the problem of compressed sensing of binary signals. In this problem, the goal is to design a sensing matrix $A$ and a recovery algorithm, such that the sparse binary vector $\mathbf{x}$ can be recovered reliably from the measurements $\mathbf{y}=A\mathbf{x}+\sigma\mathbf{z}$, where $\mathbf{z}$ is additive white Gaussian noise. We propose to design $A$ as a parity check matrix of a low-density parity-check code (LDPC), and to recover $\mathbf{x}$ from the measurements $\mathbf{y}$ using a Markov chain Monte Carlo algorithm, which runs relatively fast due to the sparse structure of $A$. The performance of our scheme is comparable to state-of-the-art schemes, which use dense sensing matrices, while enjoying the advantages of using a sparse sensing matrix.
翻译:本文以无源随机访问的应用为动力,为二元信号的压缩感测问题开发了一个新方案。 在这个问题中,我们的目标是设计一个遥感矩阵($A$)和一种回收算法,这样稀疏的二进制矢量($mathbf{x}x}$mathbf{y}A\mathbf{x{gmax\\\mathb{z}}$,其中$\mathbf{z}是添加的白高尔斯噪音。我们建议设计一个美元作为低密度对等检查矩阵(LDPC)的等值检查矩阵($A$),并使用Markov 链 Monte Carlo算法从测量($\mathbf{}$mathb{y}$美元中收回$mathbthb{x}。由于美元为零散结构,这种算法运行得相对较快。我们的计划的执行情况可以与使用密度感测矩阵的状态方案相比。我们建议设计一个使用密度感测图,同时享受使用稀薄感测矩阵的好处。