Reconstructing the structure of the soil using non invasive techniques is a very relevant problem in many scientific fields, like geophysics and archaeology. This can be done, for instance, with the aid of Frequency Domain Electromagnetic (FDEM) induction devices. Inverting FDEM data is a very challenging inverse problem, as the problem is extremely ill-posed, i.e., sensible to the presence of noise in the measured data, and non-linear. Regularization methods aim at reducing this sensitivity. In this paper we develop a regularization method to invert FDEM data. We propose to determine the electrical conductivity of the ground by solving a variational problem. The minimized functional is made up by the sum of two terms, the data fitting term ensures that the recovered solution fits the measured data, while the regularization term enforces sparsity on the Laplacian of the solution. The trade-off between the two terms is determined by the regularization parameter. This is achieved by minimizing an $\ell_2 - \ell_q$ functional with $0 < q \leq 2$. Since the functional we wish to minimize is nonconvex, we show that the variational problem admits a solution. Moreover, we prove that, if the regularization parameter is tuned accordingly to the amount of noise present in the data, this model induces a regularization method. Some selected numerical examples show the good performances of our proposal.


翻译:使用非侵入性技术重建土壤结构在许多科学领域,例如地球物理学和考古学,都是一个非常相关的问题。例如,借助频度 Domain 电磁诱导装置(FDEM) 的帮助,可以做到这一点。调转 FDEM 数据是一个非常具有挑战性的反问题,因为这个问题极不恰当,即对测量数据和非线性数据中的噪音存在非常敏感。 常规化方法旨在降低这种敏感性。 在本文中,我们开发了一个将FDEM数据倒转的规范化方法。我们提议通过解决变异问题来确定地面的电导性。最小功能由两个条件的总和组成,数据适当术语确保回收的解决方案符合测量的数据。而调校正性术语在解决方案的拉普拉普提语上增加了恐慌性。两个条件之间的交易由模型规范化参数决定。通过将一个 $_ell_2 -\ell_q$的功能化方法与一个$ < qleqDEMDM数据发生最小化。如果功能性调整方法显示我们目前的正常化方法,那么我们想要将这个正常化方法的数值进行相应的调整,那么,那么,我们想要显示一个正常化的数值。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
专知会员服务
31+阅读 · 2021年6月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
11+阅读 · 2021年2月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员