Attacks exploiting the innate and the acquired vulnerabilities of human users have posed severe threats to cybersecurity. This work proposes ADVERT, a human-technical solution that generates adaptive visual aids in real-time to prevent users from inadvertence and reduce their susceptibility to phishing attacks. Based on the eye-tracking data, we extract visual states and attention states as system-level sufficient statistics to characterize the user's visual behaviors and attention status. By adopting a data-driven approach and two learning feedback of different time scales, this work lays out a theoretical foundation to analyze, evaluate, and particularly modify humans' attention processes while they vet and recognize phishing emails. We corroborate the effectiveness, efficiency, and robustness of ADVERT through a case study based on the data set collected from human subject experiments conducted at New York University. The results show that the visual aids can statistically increase the attention level and improve the accuracy of phishing recognition from 74.6% to a minimum of 86%. The meta-adaptation can further improve the accuracy to 91.5% (resp. 93.7%) in less than 3 (resp. 50) tuning stages.


翻译:利用人类使用者的先天和后天脆弱性进行的攻击对网络安全构成了严重的威胁。 这项工作提出了ADVERT,这是一个在实时生成适应性视觉辅助器的人类技术解决方案,可实时生成适应性视觉辅助器,防止使用者疏忽,减少他们对钓鱼攻击的易感性。根据目视跟踪数据,我们提取视觉状态和注意力,作为系统层面的足够统计数据,说明使用者的视觉行为和注意力状况。通过采用数据驱动方法和不同时间尺度的两次学习反馈,这项工作为分析、评价、特别是改变人类的注意力过程奠定了理论基础,在他们检查和识别邮件时,我们通过基于在纽约大学进行的人类实验所收集的数据集的案例研究,证实了ADVERT的有效性、效率和稳健性。结果显示,视觉辅助器可以在统计上提高注意力水平,提高认字的准确度,从74.6%提高到最低的86%。 元适应可以进一步将精确度提高到不到3个阶段的9.5%(呼吸系统50)。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
38+阅读 · 2020年3月10日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员