For deep learning methods of image super-resolution, the most critical issue is whether the paired low and high resolution images for training accurately reflect the sampling process of real cameras. Low and high resolution (LR$\sim$HR) image pairs synthesized by existing degradation models (\eg, bicubic downsampling) deviate from those in reality; thus the super-resolution CNN trained by these synthesized LR$\sim$HR image pairs does not perform well when being applied to real images. In this paper, we propose a novel method to capture a large set of realistic LR$\sim$HR image pairs using real cameras.The data acquisition is carried out under controllable lab conditions with minimum human intervention and at high throughput (about 500 image pairs per hour). The high level of automation makes it easy to produce a set of real LR$\sim$HR training image pairs for each camera. Our innovation is to shoot images displayed on an ultra-high quality screen at different resolutions.There are three distinctive advantages with our method that allow us to collect high-quality training datasets for image super-resolution. First, as the LR and HR images are taken of a 3D planar surface (the screen) the registration problem fits exactly to a homography model. Second, we can display special markers on the image margin to further improve the registration precision.Third, the displayed digital image file can be exploited as a reference to optimize the high frequency content of the restored image. Experimental results show that training a super-resolution CNN by our LR$\sim$HR dataset has superior restoration performance than training it by existing datasets on real world images at the inference stage.


翻译:对于图像超分辨率的深层学习方法而言,最关键的问题是,用于培训的相配低分辨率和高分辨率图像是否准确反映了真实相机的取样过程。由现有降解模型合成的低分辨率和高分辨率图像配对(eg,双立方下游抽样)与现实不同;因此,由这些合成的LR$\sim$HR图像配对所培训的超级分辨率CNN在应用真实图像时效果不佳。在本文中,我们提出了一个新颖的方法,用真实相机拍摄大量现实的 RR$\sim$HR图像配对。数据采集是在可控的实验室条件下进行的,最低限度的人类干预和高流量模型(约每小时500张图像配方下下下游抽样)),与现实不同;我们的创新是通过不同分辨率的屏幕拍摄超高质量的图像。通过我们的方法收集高品质的 RRR$=Simal 的高级图像配对比例。数据采集在图像的可控制性实验室中进行,在图像上显示一个特别的SMASLLA上显示一个真实的图像显示。在真实的地面上,我们正在显示一个特殊的图像显示的SLU。

0
下载
关闭预览

相关内容

数据获取是指利用一种装置,将来自各种数据源的数据自动收集到一个装置中。
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Single-frame Regularization for Temporally Stable CNNs
VIP会员
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员