We demonstrate a user-focused verification approach for evaluating probability forecasts of binary outcomes (also known as probabilistic classifiers) that is (i) based on proper scoring rules, (ii) focuses on user decision thresholds, and (iii) provides actionable insights. We argue that the widespread use of categorical performance diagrams and the critical success index to evaluate probabilistic forecasts may produce misleading results and instead illustrate how Murphy diagrams are better for understanding performance across user decision thresholds. The use of proper scoring rules that account for the relative importance of different user decision thresholds is shown to impact scores of overall performance, as well as supporting measures of discrimination and calibration. These methods are demonstrated by evaluating several probabilistic thunderstorm forecast systems. Furthermore, we illustrate an approach that allows a fair comparison between continuous probabilistic forecasts and categorical outlooks using the FIxed Risk Multicategorical (FIRM) score and establish the relationship between the FIRM score and Murphy diagrams. The results highlight how the performance of thunderstorm forecasts produced for tropical Australian waters varies between operational meteorologists and an automated system depending on what decision thresholds a user is acting on. A hindcast of a new automated system is shown to generally perform better than both meteorologists and the old automated system across tropical Australian waters. While the methods are illustrated using thunderstorm forecasts, they are applicable for evaluating probabilistic forecasts for any situation with binary outcomes.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年1月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员