We consider the problem of predicting the covariance of a zero mean Gaussian vector, based on another feature vector. We describe a covariance predictor that has the form of a generalized linear model, i.e., an affine function of the features followed by an inverse link function that maps vectors to symmetric positive definite matrices. The log-likelihood is a concave function of the predictor parameters, so fitting the predictor involves convex optimization. Such predictors can be combined with others, or recursively applied to improve performance.
翻译:我们考虑了根据另一个特性矢量预测一个零平均高斯矢量的共变量的问题。我们描述了一个共变量预测器,其形式为通用线性模型,即特征的近似函数,随之而来的反链接函数将矢量映射成对称正确定矩阵。日志相似性是预测参数的共和函数,因此对预测器的匹配涉及电流优化。这些预测器可以与其他预测器结合,或者可以反复应用来改进性能。