In supervised learning -- for instance in image classification -- modern massive datasets are commonly labeled by a crowd of workers. The obtained labels in this crowdsourcing setting are then aggregated for training. The aggregation step generally leverages a per worker trust score. Yet, such worker-centric approaches discard each task ambiguity. Some intrinsically ambiguous tasks might even fool expert workers, which could eventually be harmful for the learning step. In a standard supervised learning setting -- with one label per task and balanced classes -- the Area Under the Margin (AUM) statistic is tailored to identify mislabeled data. We adapt the AUM to identify ambiguous tasks in crowdsourced learning scenarios, introducing the Weighted AUM (WAUM). The WAUM is an average of AUMs weighted by worker and task dependent scores. We show that the WAUM can help discarding ambiguous tasks from the training set, leading to better generalization or calibration performance. We report improvements with respect to feature-blind aggregation strategies both for simulated settings and for the CIFAR-10H crowdsourced dataset.
翻译:在监督学习(例如图像分类)中,现代大规模数据集通常由一群工人贴上标签。然后将这一众包环境中获得的标签汇总起来,以供培训使用。聚合步骤通常会利用每个工人的信托分数。然而,这种以工人为中心的方法会抛弃每一项任务的模糊性。一些内在的模糊性的任务甚至会愚弄专家工人,这最终可能对学习步骤有害。在标准监督学习环境中 -- -- 每任务和平衡班都有一个标签 -- -- 玛林区(AUM)统计是专门为识别标记错误的数据而设计的。我们调整了AUM,以辨明在众包学习情景中的模糊性任务,引入了WAUM(WAUM)。WAUM是按工人和任务依附分数加权的AUM的平均值。我们表明,WAUM可以帮助放弃训练组的模糊性任务,导致更好的概括性或校准性表现。我们报告,在模拟设置和CIFAR-10H群集数据集方面,对特征的汇总战略作了改进。