This paper introduces an intelligent baggage item recommendation system to optimize packing for air travelers by providing tailored suggestions based on specific travel needs and destinations. Using FastText word embeddings and Association Rule Mining (ARM), the system ensures efficient luggage space utilization, compliance with weight limits, and an enhanced travel experience. The methodology comprises four phases: (1) data collection and preprocessing with pre-trained FastText embeddings for text representation and similarity scoring (2) a content-based recommendation system enriched by user search history (3) application of ARM to user interactions to uncover meaningful item associations and (4) integration of FastText and ARM for accurate, personalized recommendations. Performance is evaluated using metrics such as coverage, support, confidence, lift, leverage, and conviction. Results demonstrate the system's effectiveness in providing relevant suggestions, improving customer satisfaction, and simplifying the packing process. These insights advance personalized recommendations, targeted marketing, and product optimization in air travel and beyond.
翻译:暂无翻译