Designing efficient algorithms to compute Nash equilibria poses considerable challenges in Algorithmic Game Theory (AGT). We shed new light on the intersection between Algorithmic Game Theory and Integer Programming. We introduce ZERO Regrets, a general and efficient cutting plane algorithm to compute, enumerate, and select Pure Nash Equilibria (PNEs) in Integer Programming Games, a class of simultaneous and non-cooperative games. We present a theoretical foundation for our algorithmic reasoning and provide a polyhedral characterization of the convex hull of the Pure Nash Equilibria. We introduce the concept of equilibrium inequality, and devise an equilibrium separation oracle to separate non-equilibrium strategies from PNEs. We evaluate our algorithmic framework on a wide range of problems from the literature and provide a solid benchmark against the existing algorithmic approaches.
翻译:设计计算纳什平衡的高效算法在算法游戏理论(AGT)中提出了相当大的挑战。我们重新揭示了算法游戏理论(AGT)和整数程序之间的交叉点。我们引入了ZERO Riscort,这是用来计算、计算和选择整数编程运动会中的普通和高效的飞机算法,这是一组同时和不合作的游戏。我们为我们的算法推理提供了理论基础,并为纯纳什公平结构的锥体提供了综合定性。我们引入了平衡不平等的概念,并设计了平衡分离符,将非平衡战略与PNES分开。我们评估了从文献中产生的一系列广泛的问题,并为现有的算法方法提供了坚实的基准。