We give two new approximation algorithms to compute the fractional hypertree width of an input hypergraph. The first algorithm takes as input $n$-vertex $m$-edge hypergraph $H$ of fractional hypertree width at most $\omega$, runs in polynomial time and produces a tree decomposition of $H$ of fractional hypertree width $O(\omega \log n \log \omega)$. As an immediate corollary this yields polynomial time $O(\log^2 n \log \omega)$-approximation algorithms for (generalized) hypertree width as well. To the best of our knowledge our algorithm is the first non-trivial polynomial-time approximation algorithm for fractional hypertree width and (generalized) hypertree width, as opposed to algorithms that run in polynomial time only when $\omega$ is considered a constant. For hypergraphs with the bounded intersection property we get better bounds, comparable with that recent algorithm of Lanzinger and Razgon [STACS 2024]. The second algorithm runs in time $n^{\omega}m^{O(1)}$ and produces a tree decomposition of $H$ of fractional hypertree width $O(\omega \log^2 \omega)$. This significantly improves over the $(n+m)^{O(\omega^3)}$ time algorithm of Marx [ACM TALG 2010], which produces a tree decomposition of fractional hypertree width $O(\omega^3)$, both in terms of running time and the approximation ratio. Our main technical contribution, and the key insight behind both algorithms, is a variant of the classic Menger's Theorem for clique separators in graphs: For every graph $G$, vertex sets $A$ and $B$, family ${\cal F}$ of cliques in $G$, and positive rational $f$, either there exists a sub-family of $O(f \cdot \log^2 n)$ cliques in ${\cal F}$ whose union separates $A$ from $B$, or there exist $f \cdot \log |{\cal F}|$ paths from $A$ to $B$ such that no clique in ${\cal F}$ intersects more than $\log |{\cal F}|$ paths.
翻译:暂无翻译