The Philippine Government recently passed the "National Writing System Act," which promotes using Baybayin in Philippine texts. In support of this effort to promote the use of Baybayin, we present a computer vision system which can aid individuals who cannot easily read Baybayin script. In this paper, we survey the existing methods of identifying Baybayin scripts using computer vision and machine learning techniques and discuss their capabilities and limitations. Further, we propose a Baybayin Optical Character Instance Segmentation and Classification model using state-of-the-art Convolutional Neural Networks (CNNs) that detect Baybayin character instances in an image then outputs the Latin alphabet counterparts of each character instance in the image. Most existing systems are limited to character-level image classification and often misclassify or not natively support characters with diacritics. In addition, these existing models often have specific input requirements that limit it to classifying Baybayin text in a controlled setting, such as limitations in clarity and contrast, among others. To our knowledge, our proposed method is the first end-to-end character instance detection model for Baybayin, achieving a mAP50 score of 93.30%, mAP50-95 score of 80.50%, and F1-Score of 84.84%.
翻译:菲律宾政府最近通过了《国家书写系统法案》,促进使用 Baybayin 来书写菲律宾文本。为了支持这一促进 Baybayin 使用的努力,我们提出了一个计算机视觉系统,可以帮助那些不能轻易阅读 Baybayin 笔迹的人。在本文中,我们调查了使用计算机视觉和机器学习技术进行 Baybayin 脚本标识的现有方法,并讨论了它们的能力和局限性。此外,我们提出了一种 Baybayin 光学字符实例分割和分类模型,使用最先进的卷积神经网络(CNN)来检测图像中的 Baybayin 字符实例,然后输出每个字符实例的拉丁字母对应字符。大多数现有的系统局限于字符级的图像分类,常常误分类或不支持带音标的字符。此外,这些现有模型常常有特定的输入要求,限制了它们在受控环境中分类 Baybayin 文本的能力,例如清晰度和对比度的局限等等。据我们所知,我们提出的方法是首个支持 Baybayin 字符实例检测的端到端模型,在 mAP50 得分方面达到了 93.30%,mAP50-95 得分方面达到了 80.50%,F1-Score 方面达到了 84.84%。