The Gomory-Hu tree or cut tree (Gomory and Hu, 1961) is a classic data structure for reporting $(s,t)$ mincuts (and by duality, the values of $(s,t)$ maxflows) for all pairs of vertices $s$ and $t$ in an undirected graph. Gomory and Hu showed that it can be computed using $n-1$ exact maxflow computations. Surprisingly, this remains the best algorithm for Gomory-Hu trees more than 50 years later, *even for approximate mincuts*. In this paper, we break this longstanding barrier and give an algorithm for computing a $(1+\epsilon)$-approximate Gomory-Hu tree using $\text{polylog}(n)$ maxflow computations. Specifically, we obtain the runtime bounds we describe below. We obtain a randomized (Monte Carlo) algorithm for undirected, weighted graphs that runs in $\tilde O(m + n^{3/2})$ time and returns a $(1+\epsilon)$-approximate Gomory-Hu tree algorithm w.h.p. Previously, the best running time known was $\tilde O(n^{5/2})$, which is obtained by running Gomory and Hu's original algorithm on a cut sparsifier of the graph. Next, we obtain a randomized (Monte Carlo) algorithm for undirected, unweighted graphs that runs in $m^{4/3+o(1)}$ time and returns a $(1+\epsilon)$-approximate Gomory-Hu tree algorithm w.h.p. This improves on our first result for sparse graphs, namely $m = o(n^{9/8})$. Previously, the best running time known for unweighted graphs was $\tilde O(mn)$ for an exact Gomory-Hu tree (Bhalgat et al., STOC 2007); no better result was known if approximations are allowed. As a consequence of our Gomory-Hu tree algorithms, we also solve the $(1+\epsilon)$-approximate all pairs mincut and single source mincut problems in the same time bounds. (These problems are simpler in that the goal is to only return the $(s,t)$ mincut values, and not the mincuts.) This improves on the recent algorithm for these problems in $\tilde O(n^2)$ time due to Abboud et al. (FOCS 2020).


翻译:Gomory-Hu树或剪切树(Gomory和Hu,1961年)是一个典型的数据结构,用来报告所有双面脊椎($)和美元(美元)的折分数(美元,t)美元(美元)和美元(美元),Gomory和Hu(美元)显示它可以用美元-1美元准确最大流计算来计算。令人惊讶的是,这仍然是50年后Gomory-Hu树(美元)的最佳算法,*甚至用来报告大约的折分数*。在这个文件中,我们打破了这个长期屏障,用美元(1 ⁇ )美元(美元),Gomory-H树(美元)的折数(美元)值(美元)计算。具体地说,我们可以在下文中找到运行运行的运行时间(美元),我们以美元(美元(美元)的平价(美元)预算法(美元)的折算法(美元)的折算法(美元)。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员