We present a methodology that explores how sentence structure is reflected in neural representations of machine translation systems. We demonstrate our model-agnostic approach with the Transformer English-German translation model. We analyze neuron-level correlation of activations between paraphrases while discussing the methodology challenges and the need for confound analysis to isolate the effects of shallow cues. We find that similarity between activation patterns can be mostly accounted for by similarity in word choice and sentence length. Following that, we manipulate neuron activations to control the syntactic form of the output. We show this intervention to be somewhat successful, indicating that deep models capture sentence-structure distinctions, despite finding no such indication at the neuron level. To conduct our experiments, we develop a semi-automatic method to generate meaning-preserving minimal pair paraphrases (active-passive voice and adverbial clause-noun phrase) and compile a corpus of such pairs.
翻译:我们提出了一种方法,探索如何在机器翻译系统的神经结构中反映刑罚结构。我们展示了我们与变换器英德翻译模型的模范不可知性方法。我们分析了参数之间激活的神经层面的相关性,同时讨论了方法挑战,以及需要进行混淆分析以分离浅提示的影响的必要性。我们发现,激活模式之间的相似性主要可以归因于文字选择和句长的相似性。随后,我们操纵神经激活以控制产出的合成形式。我们展示了这一干预略为成功,表明深层模型捕捉了句结构的区别,尽管在神经层面没有发现这种迹象。为了进行实验,我们开发了一种半自动方法,以产生保留最小值的双副句(主动被动和被动声音和可读条款-名词词句),并汇编了这些对子的组合。