In a multi-channel Wireless Mesh Networks (WMN), each node is able to use multiple non-overlapping frequency channels. Raniwala et al. (Mobile Computing and Communications Review 2004, INFOCOM 2005) propose and study several such architectures in which a computer can have multiple network interface cards. These architectures are modeled as a graph problem named \emph{maximum edge $q$-coloring} and studied in several papers by Feng et. al (TAMC 2007), Adamazek and Popa (ISAAC 2010, Journal of Discrete Algorithms 2016). Later on Larjomaa and Popa (IWOCA 2014, Journal of Graph Algorithms and Applications 2015) define and study an alternative variant, named the \emph{min-max edge $q$-coloring}. The above mentioned graph problems, namely the maximum edge $q$-coloring and the min-max edge $q$-coloring are studied mainly from the theoretical perspective. In this paper, we study the min-max edge $q$-coloring problem from a practical perspective. More precisely, we introduce, implement and test three heuristic approximation algorithms for the min-max edge $q$-coloring problem. These algorithms are based on local search methods like basic hill climbing, simulated annealing and tabu search techniques. Although several algorithms for particular graph classes were proposed by Larjomaa and Popa (e.g., trees, planar graphs, cliques, bi-cliques, hypergraphs), we design the first algorithms for general graphs.


翻译:在多通道Wireless Mesh网络(WMN)中,每个节点都能够使用多个非重叠频率频道。Raniwala等人(Mobile Commote and Communication Review 2004,INFOCOM 2005)提议并研究若干这样的结构,计算机可以在其中拥有多个网络界面卡片。这些结构以图表问题为模样,名为emph{最大边缘值$q美元-彩色},由冯等人(TAMC 2007)、Adamazek和Popa(ISAC 2010, Discrete Algorithms Journal 2016)。拉乔马亚和波帕(IWOCA 2014,《图表Algorithms 和应用程序2015年》)后期,定义并研究一些这样的结构。上面提到的图表问题,即最大边缘值$qu-col-colorgy-caling,主要从理论角度,我们研究了微量级平级平平平平平平平平平平平平平平平级平平平平面平平面平平平平平平平平平平平平平平。

0
下载
关闭预览

相关内容

深度学习搜索,Exploring Deep Learning for Search
专知会员服务
60+阅读 · 2020年5月9日
专知会员服务
162+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
AutoML与轻量模型大列表
专知
8+阅读 · 2019年4月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关VIP内容
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
60+阅读 · 2020年5月9日
专知会员服务
162+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
AutoML与轻量模型大列表
专知
8+阅读 · 2019年4月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员