In this work, we propose an adversarial unsupervised domain adaptation (UDA) approach with the inherent conditional and label shifts, in which we aim to align the distributions w.r.t. both $p(x|y)$ and $p(y)$. Since the label is inaccessible in the target domain, the conventional adversarial UDA assumes $p(y)$ is invariant across domains, and relies on aligning $p(x)$ as an alternative to the $p(x|y)$ alignment. To address this, we provide a thorough theoretical and empirical analysis of the conventional adversarial UDA methods under both conditional and label shifts, and propose a novel and practical alternative optimization scheme for adversarial UDA. Specifically, we infer the marginal $p(y)$ and align $p(x|y)$ iteratively in the training, and precisely align the posterior $p(y|x)$ in testing. Our experimental results demonstrate its effectiveness on both classification and segmentation UDA, and partial UDA.
翻译:在这项工作中,我们提出了一种与固有的有条件和标签变化相对应的、不受监督的域适应(UDA)办法,我们力求在其中调整分配(w.r.t)美元(x ⁇ y)和美元(y)美元。由于在目标领域无法取得标签,传统的对抗性UDA假设美元(y)是跨域的无差异的,并依靠对美元(x)美元作为美元(x ⁇ y)对齐的替代。为解决这一问题,我们提供了对有条件和标签变化下传统的对抗性UDA方法的透彻理论和经验分析,并为对抗性UDA提出了新颖和实用的替代优化计划。具体地说,我们反复推算了培训中的边际美元(y)和对美元(x ⁇ y)的调整,并在测试中精确地对后方美元(yx)对美元(yx)美元(yx)的调整。我们的实验结果表明,它对于UDA和部分UDA的分类和分解效果是有效的。