In this work we demonstrate a novel separation between symmetric neural network architectures. Specifically, we consider the Relational Network~\parencite{santoro2017simple} architecture as a natural generalization of the DeepSets~\parencite{zaheer2017deep} architecture, and study their representational gap. Under the restriction to analytic activation functions, we construct a symmetric function acting on sets of size $N$ with elements in dimension $D$, which can be efficiently approximated by the former architecture, but provably requires width exponential in $N$ and $D$ for the latter.
翻译:在这项工作中,我们展示了对称神经网络结构之间的新分离。 具体地说,我们认为关系网络(Relational Network ) {parencite{santoro2017sempty} 架构是DeepSets ⁇ parencite{zaheer{zaheer2017deep} 架构的自然概括,并研究其代表性差距。 在对分析激活功能的限制下,我们构建了一个对称功能,对称功能的尺寸为1美元,其尺寸为1美元,其尺寸为1美元,但前一个架构可以有效接近,但可以证明需要以美元和1美元为单位的宽度指数,后者则需要以美元和1美元为单位的宽度指数。