Simulating quantum channels is a fundamental primitive in quantum computing, since quantum channels define general (trace-preserving) quantum operations. An arbitrary quantum channel cannot be exactly simulated using a finite-dimensional programmable quantum processor, making it important to develop optimal approximate simulation techniques. In this paper, we study the challenging setting in which the channel to be simulated varies adversarially with time. We propose the use of matrix exponentiated gradient descent (MEGD), an online convex optimization method, and analytically show that it achieves a sublinear regret in time. Through experiments, we validate the main results for time-varying dephasing channels using a programmable generalized teleportation processor.
翻译:模拟量子信道是量子计算的基本原始, 因为量子信道定义了一般( 跟踪- 保存) 量子操作。 任意量子信道无法使用可编程的量子处理器进行精确模拟, 这使得开发最佳近似模拟技术变得非常重要 。 在本文中, 我们研究模拟频道的富有挑战性的环境, 模拟频道随时间而变化。 我们提议使用矩阵推导梯度梯度下降( MEGD ), 这是一种在线二次曲线优化方法, 并分析显示它在时间上取得了次线性遗憾 。 我们通过实验, 我们验证了使用可编程通用传送处理器进行时间变化的导线切换频道的主要结果 。