Facial expression is one of the most external indications of a person's feelings and emotions. In daily conversation, according to the psychologist, only 7\% and 38\% of information is communicated through words and sounds respective, while up to 55\% is through facial expression. It plays an important role in coordinating interpersonal relationships. Ekman and Friesen recognized six essential emotions in the nineteenth century depending on a cross-cultural study, which indicated that people feel each basic emotion in the same fashion despite culture. As a branch of the field of analyzing sentiment, facial expression recognition offers broad application prospects in a variety of domains, including the interaction between humans and computers, healthcare, and behavior monitoring. Therefore, many researchers have devoted themselves to facial expression recognition. In this paper, an effective hybrid data augmentation method is used. This approach is operated on two public datasets, and four benchmark models see some remarkable results.


翻译:面部表达是个人情感和情感的最外部迹象之一。 根据心理学家,在日常对话中,只有7 ⁇ 和38 ⁇ 的信息通过言语和声音相容传递,而多达55 ⁇ 是通过面部表达。它在协调人际关系方面发挥着重要作用。Ekman和Friesen根据跨文化研究,在十九世纪承认了六种基本情感,这取决于跨文化研究,该研究表明,尽管文化存在,人们还是以同样的方式感受到每一种基本情感。作为分析情绪的领域的一个分支,面部表达的识别在各个领域提供了广泛的应用前景,包括人与计算机、医疗保健和行为监测之间的互动。因此,许多研究人员致力于面部表达的识别。在本文中,使用了有效的混合数据增强方法。这种方法在两个公共数据集上运作,四个基准模型看到一些显著的结果。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Survey on Data Augmentation for Text Classification
Arxiv
38+阅读 · 2020年12月2日
Arxiv
17+阅读 · 2020年11月15日
Arxiv
13+阅读 · 2020年10月19日
Arxiv
20+阅读 · 2020年6月8日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关论文
A Survey on Data Augmentation for Text Classification
Arxiv
38+阅读 · 2020年12月2日
Arxiv
17+阅读 · 2020年11月15日
Arxiv
13+阅读 · 2020年10月19日
Arxiv
20+阅读 · 2020年6月8日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员