Sudoku is a logic puzzle with an objective to fill a number between 1 and 9 in each empty cell of a $9 \times 9$ grid such that every number appears exactly once in each row, each column, and each $3 \times 3$ block. In 2020, Sasaki et al. proposed a physical zero-knowledge proof (ZKP) protocol for Sudoku using 90 cards, which allows a prover to physically show that he/she knows a solution without revealing it. However, their protocol requires nine identical copies of some cards, which cannot be found in a standard deck of playing cards. Therefore, nine decks of cards are actually required in order to perform that protocol. In this paper, we propose a new ZKP protocol for Sudoku that can be performed using only two standard decks of playing cards. In general, we develop the first ZKP protocol for an $n \times n$ Sudoku that can be performed using a deck of all different cards.
翻译:数独是一个逻辑谜题, 目的是在每空格中填充一个数字, 每个空格为1至9美元, 共9美元, 使每个数字在每行、 每列和每3美元 共3美元区块中完全出现一次。 2020年, Sasaki 等人为数独提议了一个物理零知识证明( ZKP) 协议, 使用 90 张卡片, 使验证人能够用 90 张卡片来实际显示他/ 她知道一个解决方案 。 但是, 他们的协议要求某些卡片的九份相同副本, 这些卡片无法在标准扑克牌中找到。 因此, 执行此协议实际上需要 9 张卡片甲 。 我们在此文件中提议一个只使用 两种标准扑克牌来执行的数独角体新 ZKP 协议 。 一般来说, 我们开发第一个 ZKP 协议, 用于 $\ times n$ Sudoku 。