News recommendation (NR) is essential for online news services. Existing NR methods typically adopt a news-user representation learning framework, facing two potential limitations. First, in news encoder, single candidate news encoding suffers from an insufficient semantic information problem. Second, existing graph-based NR methods are promising but lack effective news-user feature interaction, rendering the graph-based recommendation suboptimal. To overcome these limitations, we propose dual-interactive graph attention networks (DIGAT) consisting of news- and user-graph channels. In the news-graph channel, we enrich the semantics of single candidate news by incorporating the semantically relevant news information with a semantic-augmented graph (SAG). In the user-graph channel, multi-level user interests are represented with a news-topic graph. Most notably, we design a dual-graph interaction process to perform effective feature interaction between the news and user graphs, which facilitates accurate news-user representation matching. Experiment results on the benchmark dataset MIND show that DIGAT outperforms existing news recommendation methods. Further ablation studies and analyses validate the effectiveness of (1) semantic-augmented news graph modeling and (2) dual-graph interaction.
翻译:现有的新闻建议(NR)对于在线新闻服务至关重要。现有的NR方法通常采用一个用户代表学习框架,面临两个潜在的限制。首先,在新闻编码器中,单一候选新闻编码缺乏足够的语义信息问题。第二,现有的基于图形的NR方法很有希望,但缺乏有效的新闻用户特征互动,使基于图形的建议变得不理想。为克服这些限制,我们提议由新闻和用户用户用户频道组成的双互动图形关注网络(DIGAT),在新闻电报频道中,我们通过将与语义有关的新闻信息与语义煽动图(SAG)相结合来丰富单一候选新闻的语义。在用户绘图频道中,多层次用户兴趣以新闻专题图为代表。最值得注意的是,我们设计了一个双面图像互动进程,以便在新闻和用户图表之间进行有效的地段互动,从而便利准确的新闻用户代表性匹配。在基准数据集MIND的实验结果中显示,DIGAT超越了现有的新闻建议方法。进一步进行模型研究和分析,以确认双面图表(1个图像)的互动效果。