The CP decomposition for high dimensional non-orthogonal spiked tensors is an important problem with broad applications across many disciplines. However, previous works with theoretical guarantee typically assume restrictive incoherence conditions on the basis vectors for the CP components. In this paper, we propose new computationally efficient composite PCA and concurrent orthogonalization algorithms for tensor CP decomposition with theoretical guarantees under mild incoherence conditions. The composite PCA applies the principal component or singular value decompositions twice, first to a matrix unfolding of the tensor data to obtain singular vectors and then to the matrix folding of the singular vectors obtained in the first step. It can be used as an initialization for any iterative optimization schemes for the tensor CP decomposition. The concurrent orthogonalization algorithm iteratively estimates the basis vector in each mode of the tensor by simultaneously applying projections to the orthogonal complements of the spaces generated by other CP components in other modes. It is designed to improve the alternating least squares estimator and other forms of the high order orthogonal iteration for tensors with low or moderately high CP ranks, and it is guaranteed to converge rapidly when the error of any given initial estimator is bounded by a small constant. Our theoretical investigation provides estimation accuracy and convergence rates for the two proposed algorithms. Both proposed algorithms are applicable to deterministic tensor, its noisy version, and the order-$2K$ covariance tensor of order-$K$ tensor data in a factor model with uncorrelated factors. Our implementations on synthetic data demonstrate significant practical superiority of our approach over existing methods.
翻译:高维非正统悬浮加压加压的电解解析法是多个学科广泛应用的一个重要问题。 但是,先前的理论保障工作通常假定在CP组件的向量基矢量上存在限制性不一致性条件。 在本文件中,我们提议在轻度不一致性条件下,以理论保证的方式,为Exor CP分解采用新的计算高效复合五氯苯和同时的正振变法算法; 复合五氯苯将主构件或单值美元分解两次应用主构件或单值。 首先是为获得单向向量矢量数据,然后为第一步获得的单向量向量矢量向量矢量矢量数据折叠叠叠。 同时或振动算算法通过对其他模式中振成的空间的振动补补补码同时进行迭接。 设计用于改进最小正向量数据的交替性估测算法和在第一步获得的单向量的向量递归正的极量递增矩阵的矩阵的矩阵。 当我们进行低度或连续的对量测算时, 其当前对量的测算法的顺序和正压的精确度的测算法将使我们的测算法的顺序向快速的测算结果提供中, 。