As legged robots take on roles in industrial and autonomous construction, collaborative loco-manipulation is crucial for handling large and heavy objects that exceed the capabilities of a single robot. However, ensuring the safety of these multi-robot tasks is essential to prevent accidents and guarantee reliable operation. This paper presents a hierarchical control system for object manipulation using a team of quadrupedal robots. The combination of the motion planner and the decentralized locomotion controller in a hierarchical structure enables safe, adaptive planning for teams in complex scenarios. A high-level nonlinear model predictive control planner generates collision-free paths by incorporating control barrier functions, accounting for static and dynamic obstacles. This process involves calculating contact points and forces while adapting to unknown objects and terrain properties. The decentralized loco-manipulation controller then ensures each robot maintains stable locomotion and manipulation based on the planner's guidance. The effectiveness of our method is carefully examined in simulations under various conditions and validated in real-life setups with robot hardware. By modifying the object's configuration, the robot team can maneuver unknown objects through an environment containing both static and dynamic obstacles. We have made our code publicly available in an open-source repository at \url{https://github.com/DRCL-USC/collaborative_loco_manipulation}.
翻译:暂无翻译