Complex analyses involving multiple, dependent random quantities often lead to graphical models - a set of nodes denoting variables of interest, and corresponding edges denoting statistical interactions between nodes. To develop statistical analyses for graphical data, especially towards generative modeling, one needs mathematical representations and metrics for matching and comparing graphs, and subsequent tools, such as geodesics, means, and covariances. This paper utilizes a quotient structure to develop efficient algorithms for computing these quantities, leading to useful statistical tools, including principal component analysis, statistical testing, and modeling. We demonstrate the efficacy of this framework using datasets taken from several problem areas, including letters, biochemical structures, and social networks.
翻译:复杂分析涉及多个、依赖性随机数量,往往导致图形模型 -- -- 一组标明感兴趣变量的节点和相应的边缘,标明节点之间的统计互动。为图形数据进行统计分析,特别是用于基因模型的统计分析,人们需要数学表达方式和用于匹配和比较图表的衡量尺度,以及随后的工具,如大地测量、手段和共变等。本文利用商数结构来制定计算这些数量的有效算法,从而产生有用的统计工具,包括主要组成部分分析、统计测试和建模。我们用从几个问题领域(包括字母、生物化学结构和社交网络)获取的数据集来展示这一框架的功效。