Two-stage randomized experiments are becoming an increasingly popular experimental design for causal inference when the outcome of one unit may be affected by the treatment assignments of other units in the same cluster. In this paper, we provide a methodological framework for general tools of statistical inference and power analysis for two-stage randomized experiments. Under the randomization-based framework, we propose unbiased point estimators of direct and spillover effects, construct conservative variance estimators, develop hypothesis testing procedures, and derive sample size formulas. We also establish the equivalence relationships between the randomization-based and regression-based methods. We theoretically compare the two-stage randomized design with the completely randomized and cluster randomized designs, which represent two limiting designs. Finally, we conduct simulation studies to evaluate the empirical performance of our sample size formulas. For empirical illustration, the proposed methodology is applied to the analysis of the data from a field experiment on a job placement assistance program.
翻译:当一个单位的结果可能受到同一组别中其他单位的处理任务的影响时,两阶段随机实验正在成为一种日益流行的因果关系推断实验设计。在本文件中,我们为两阶段随机实验的统计推断和权力分析的一般工具提供了一个方法框架。在随机化框架下,我们提出直接效应和外溢效应的公正点估计器,建立保守的差异估计器,制定假设测试程序,并得出样本尺寸公式。我们还在随机化方法和回归法之间建立等同关系。我们理论上将两阶段随机化设计与完全随机化和集群随机化的设计进行比较,这代表两个限制性的设计。最后,我们进行模拟研究,以评价我们样本尺寸公式的经验性表现。关于经验性说明,拟议方法用于分析关于职位安排援助方案的实地实验数据。