In this work we discuss the problem of active learning. We present an approach that is based on A-optimal experimental design of ill-posed problems and show how one can optimally label a data set by partially probing it, and use it to train a deep network. We present two approaches that make different assumptions on the data set. The first is based on a Bayesian interpretation of the semi-supervised learning problem with the graph Laplacian that is used for the prior distribution and the second is based on a frequentist approach, that updates the estimation of the bias term based on the recovery of the labels. We demonstrate that this approach can be highly efficient for estimating labels and training a deep network.


翻译:在这项工作中,我们讨论了积极学习的问题。我们提出了一个基于对问题进行最佳实验设计的方法,并展示了如何通过部分验证对数据集进行最佳标签,并用它来培训深层网络。我们提出了对数据集作出不同假设的两种方法。第一种方法基于巴伊西亚人对半监督学习问题的解读,前者是用于先前分发的拉普拉西亚图,而第二种方法则基于经常使用的方法,以更新基于恢复标签的偏见术语的估算。我们证明这种方法对于估计标签和培训深度网络非常有效。

0
下载
关闭预览

相关内容

【经典书】主动学习理论,226页pdf,Theory of Active Learning
专知会员服务
128+阅读 · 2021年7月14日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
浅谈主动学习(Active Learning)
凡人机器学习
32+阅读 · 2020年6月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关VIP内容
【经典书】主动学习理论,226页pdf,Theory of Active Learning
专知会员服务
128+阅读 · 2021年7月14日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
浅谈主动学习(Active Learning)
凡人机器学习
32+阅读 · 2020年6月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
相关论文
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
3+阅读 · 2016年2月24日
Top
微信扫码咨询专知VIP会员