This paper studies a linear and additively separable model for multidimensional panel data of three or more dimensions with unobserved interactive fixed effects. Two approaches are considered to account for these unobserved interactive fixed-effects when estimating coefficients on the observed covariates. First, the model is embedded within the standard two-dimensional panel framework and restrictions are derived under which the factor structure methods in Bai (2009) lead to consistent estimation of model parameters. The second approach considers group fixed-effects and kernel methods that are more robust to the multidimensional nature of the problem. Theoretical results and simulations show the benefit of standard two-dimensional panel methods when the structure of the interactive fixed-effect term is known, but also highlight how the group fixed-effects and kernel methods perform well without knowledge of this structure. The methods are implemented to estimate the demand elasticity for beer under a handful of models for demand.
翻译:本文研究三个或三个以上层面的多维面面板数据线性且可添加分离模型,具有未观测到的互动固定效应。在估计观察到的共差系数时,考虑两种方法来说明这些未观测到的互动固定效应。第一,该模型嵌入标准二维面板块框架,并得出一些限制,根据这些限制,Bai(2009年)中的要素结构方法可以得出对模型参数的一致估计。第二种方法考虑了组类固定效应和内核方法,这些对问题的多维性质更为有力。理论结果和模拟表明,当交互式固定效应期的结构为人所知时,标准二维面板方法将带来益处,但也突出该组类固定效应和内核方法如何在不了解这一结构的情况下运行良好。采用这些方法,根据少数需求模型估算啤酒的需求弹性。