We present a novel semi-implicit scheme for numerical solutions of time-dependent conservation laws. The core idea of the presented method consists of exploiting and approximating mixed partial derivatives of the solution that occur naturally when deriving higher-order accurate schemes. Such an approach is introduced in the context of the Lax-Wendroff (or Cauchy-Kowalevski) procedure when the time derivatives are not completely replaced by space derivatives using the PDE, but some mixed derivatives are allowed. If approximated in a suitable way, one obtains algebraic systems that have a more convenient structure than the systems derived by standard fully implicit schemes. We derive high-resolution TVD form of the semi-implicit scheme for some representative hyperbolic equations in one-dimensional case including related numerical experiments.
翻译:我们提出了一个新颖的半隐含计划,用于根据时间来制定保护法的数字解决方案,提出方法的核心理念是利用和接近在产生更高层次准确计划时自然产生的解决方案的混合部分衍生物,这种方法是在Lax-Wendroff(或Cauchy-Kowalevski)程序的背景下引入的,当时衍生物没有完全被使用PDE的空间衍生物所取代,但允许使用某些混合衍生物。如果以适当方式加以比较,那么,人们获得的代数系统比标准的完全隐含计划所衍生的系统更方便。我们从一维中为某些具有代表性的双曲方程式(包括相关的数字实验)获得高分辨率TVD的半隐含计划形式。