In this paper, we propose to employ a Gaussian map representation to estimate precise location and count of 3D surface features, addressing the limitations of state-of-the-art methods based on density estimation which struggle in presence of local disturbances. Gaussian maps indicate probable object location and can be generated directly from keypoint annotations avoiding laborious and costly per-pixel annotations. We apply this method to the 3D spheroidal class of objects which can be projected into 2D shape representation enabling efficient processing by a neural network GNet, an improved UNet architecture, which generates the likely locations of surface features and their precise count. We demonstrate a practical use of this technique for counting strawberry achenes which is used as a fruit quality measure in phenotyping applications. The results of training the proposed system on several hundreds of 3D scans of strawberries from a publicly available dataset demonstrate the accuracy and precision of the system which outperforms the state-of-the-art density-based methods for this application.
翻译:在本文中,我们提议使用高斯地图表示法来估计精确位置和计算三维表面特征,解决基于密度估计的最先进方法的局限性,这种方法基于密度估计,在当地动乱下挣扎。高斯地图显示可能的物体位置,可以直接从关键点说明中生成,避免费力和昂贵的每像素注解。我们将这种方法应用于3D类天体图,这些天体可以投射为2D形状表示法,以便通过神经网络GNet进行高效处理。GNet是一个经过改进的UNet结构,产生可能的地表特征位置和精确的计算。我们展示了这种计算草莓切片的技术的实际用途,这是用于在口述应用中作为水果质量计量的一种措施。对从公开可得的数据集中几百个三维对草莓进行扫描的拟议系统进行了培训,其结果显示,该系统的准确性和准确性超过了用于这一应用的基于密度的先进方法。