A filter is a widely used data structure for storing an approximation of a given set $S$ of elements from some universe $U$ (a countable set).It represents a superset $S'\supseteq S$ that is ''close to $S$'' in the sense that for $x\not\in S$, the probability that $x\in S'$ is bounded by some $\varepsilon > 0$. The advantage of using a Bloom filter, when some false positives are acceptable, is that the space usage becomes smaller than what is required to store $S$ exactly. Though filters are well-understood from a worst-case perspective, it is clear that state-of-the-art constructions may not be close to optimal for particular distributions of data and queries. Suppose, for instance, that some elements are in $S$ with probability close to 1. Then it would make sense to always include them in $S'$, saving space by not having to represent these elements in the filter. Questions like this have been raised in the context of Weighted Bloom filters (Bruck, Gao and Jiang, ISIT 2006) and Bloom filter implementations that make use of access to learned components (Vaidya, Knorr, Mitzenmacher, and Krask, ICLR 2021). In this paper, we present a lower bound for the expected space that such a filter requires. We also show that the lower bound is asymptotically tight by exhibiting a filter construction that executes queries and insertions in worst-case constant time, and has a false positive rate at most $\varepsilon $ with high probability over input sets drawn from a product distribution. We also present a Bloom filter alternative, which we call the $\textit{Daisy Bloom filter}$, that executes operations faster and uses significantly less space than the standard Bloom filter.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
147+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年7月29日
Arxiv
0+阅读 · 2024年7月29日
Arxiv
0+阅读 · 2024年7月25日
Arxiv
0+阅读 · 2024年7月24日
Arxiv
0+阅读 · 2024年7月22日
Arxiv
0+阅读 · 2024年7月19日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
相关论文
Arxiv
0+阅读 · 2024年7月29日
Arxiv
0+阅读 · 2024年7月29日
Arxiv
0+阅读 · 2024年7月25日
Arxiv
0+阅读 · 2024年7月24日
Arxiv
0+阅读 · 2024年7月22日
Arxiv
0+阅读 · 2024年7月19日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员