This article presents a concise proof of the famous Benford's law when the distribution has a Riemann integrable probability density function and provides a criterion to judge whether a distribution obeys the law. The proof is intuitive and elegant, accessible to anyone with basic knowledge of calculus, revealing that the law originates from the basic property of the human number system. The criterion can bring great convenience to the field of fraud detection.
翻译:暂无翻译