The increasing popularity of the Web has subsequently increased the abundance of reviews on products and services. Mining these reviews for expressed sentiment is beneficial for both companies and consumers, as quality can be improved based on this information. In this paper, we consider the state-of-the-art HAABSA++ algorithm for aspect-based sentiment analysis tasked with identifying the sentiment expressed towards a given aspect in review sentences. Specifically, we train the neural network part of this algorithm using an adversarial network, a novel machine learning training method where a generator network tries to fool the classifier network by generating highly realistic new samples, as such increasing robustness. This method, as of yet never in its classical form applied to aspect-based sentiment analysis, is found to be able to considerably improve the out-of-sample accuracy of HAABSA++: for the SemEval 2015 dataset, accuracy was increased from 81.7% to 82.5%, and for the SemEval 2016 task, accuracy increased from 84.4% to 87.3%.


翻译:网络越来越受欢迎, 从而增加了产品和服务审查的丰度。 开采这些对已表达的情绪的审查对公司和消费者都有好处, 因为根据这些信息可以提高质量。 在本文中,我们认为, 最先进的HAABSA++ 运算法, 用于进行基于侧面情绪分析, 任务是确定对复审判决中某一方面表达的情绪。 具体地说, 我们使用对立网络来培训这一算法的神经网络部分, 这是一种新型的机器学习培训方法, 发电机网络试图通过生成高度现实的新样本来愚弄分类者网络, 诸如不断增强的稳健性。 这种方法在传统形式上从未被应用于基于侧面情绪分析, 被认为能够大大改进HAABSA+++: 对于SemEval 2015数据集, 准确率从81.7%提高到82.5%, 而对于SemEval 2016任务, 准确率从84.4%提高到87.3%。

0
下载
关闭预览

相关内容

狭义的情感分析(sentiment analysis)是指利用计算机实现对文本数据的观点、情感、态度、情绪等的分析挖掘。广义的情感分析则包括对图像视频、语音、文本等多模态信息的情感计算。简单地讲,情感分析研究的目标是建立一个有效的分析方法、模型和系统,对输入信息中某个对象分析其持有的情感信息,例如观点倾向、态度、主观观点或喜怒哀乐等情绪表达。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【CVPR2021】动态度量学习
专知会员服务
39+阅读 · 2021年3月30日
【CVPR2021】细粒度多标签分类
专知会员服务
60+阅读 · 2021年3月8日
专知会员服务
47+阅读 · 2020年9月20日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Interpretable Adversarial Training for Text
Arxiv
5+阅读 · 2019年5月30日
Arxiv
7+阅读 · 2018年1月18日
Arxiv
5+阅读 · 2015年9月14日
VIP会员
相关VIP内容
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员