As methods to create discrimination-aware models develop, they focus on centralized ML, leaving federated learning (FL) unexplored. FL is a rising approach for collaborative ML, in which an aggregator orchestrates multiple parties to train a global model without sharing their training data. In this paper, we discuss causes of bias in FL and propose three pre-processing and in-processing methods to mitigate bias, without compromising data privacy, a key FL requirement. As data heterogeneity among parties is one of the challenging characteristics of FL, we conduct experiments over several data distributions to analyze their effects on model performance, fairness metrics, and bias learning patterns. We conduct a comprehensive analysis of our proposed techniques, the results demonstrating that these methods are effective even when parties have skewed data distributions or as little as 20% of parties employ the methods.
翻译:随着产生歧视意识模式的方法的发展,这些模式侧重于集中的多功能模式,使联合学习(FL)没有被探索。FL是合作多功能模式的一种日益增强的做法,其中,一个聚合体在不分享其培训数据的情况下安排多个方面来培训一个全球模式。在本文中,我们讨论了在多功能模式中产生偏见的原因,并提出了三种处理前和处理中的方法,以在不损害数据隐私的情况下减少偏见,这是一项关键的多功能模式要求。由于缔约方之间的数据差异是多功能模式的具有挑战性的特点之一,我们就若干数据分配进行了实验,以分析其对模型性能、公平度量度和偏向学习模式的影响。我们全面分析我们提出的技术,结果表明这些方法即使在缔约方扭曲了数据分布或只有20%的缔约方采用这些方法的情况下也是有效的。