The active search for objects of interest in an unknown environment has many robotics applications including search and rescue, detecting gas leaks or locating animal poachers. Existing algorithms often prioritize the location accuracy of objects of interest while other practical issues such as the reliability of object detection as a function of distance and lines of sight remain largely ignored. Additionally, in many active search scenarios, communication infrastructure may be unreliable or unestablished, making centralized control of multiple agents impractical. We present an algorithm called Noise-Aware Thompson Sampling (NATS) that addresses these issues for multiple ground-based robots performing active search considering two sources of sensory information from monocular optical imagery and depth maps. By utilizing Thompson Sampling, NATS allows for decentralized coordination among multiple agents. NATS also considers object detection uncertainty from depth as well as environmental occlusions and operates while remaining agnostic of the number of objects of interest. Using simulation results, we show that NATS significantly outperforms existing methods such as information-greedy policies or exhaustive search. We demonstrate the real-world viability of NATS using a pseudo-realistic environment created in the Unreal Engine 4 game development platform with the AirSim plugin.


翻译:在未知环境中积极搜索感兴趣的物体有许多机器人应用,包括搜索和救援、发现气体泄漏或寻找动物偷猎者。现有的算法往往优先考虑受关注物体的位置准确性,而其他实际问题,例如物体探测的可靠性作为距离和视线的函数仍然大都被忽视。此外,在许多主动搜索的情景中,通信基础设施可能不可靠或未建立,使多物剂的集中控制不切实际。我们提出了一个称为Nise-Aware Thompson Sampling(NATS)的算法,用于处理多种陆基机器人的这些问题,这些机器人根据单镜光学图像和深度地图的两种感官信息来源进行积极搜索。通过利用Thompson抽样,NATS能够分散多个物剂之间的协调。NATS还考虑到从深度和环境隔离性来看物体探测的不确定性和运行,同时仍然对受关注的物体的数量保持敏感。我们用模拟结果显示,NATS大大超越了现有方法,例如信息智能政策或彻底搜索。我们利用在不真实的引擎4游戏平台上创建的假现实环境展示了NATS的真实可行性。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
57+阅读 · 2020年5月9日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
204+阅读 · 2020年1月13日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年5月15日
Arxiv
5+阅读 · 2021年2月8日
Arxiv
5+阅读 · 2018年6月12日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员