Defending machine-learning (ML) models against white-box adversarial attacks has proven to be extremely difficult. Instead, recent work has proposed stateful defenses in an attempt to defend against a more restricted black-box attacker. These defenses operate by tracking a history of incoming model queries, and rejecting those that are suspiciously similar. The current state-of-the-art stateful defense Blacklight was proposed at USENIX Security '22 and claims to prevent nearly 100% of attacks on both the CIFAR10 and ImageNet datasets. In this paper, we observe that an attacker can significantly reduce the accuracy of a Blacklight-protected classifier (e.g., from 82.2% to 6.4% on CIFAR10) by simply adjusting the parameters of an existing black-box attack. Motivated by this surprising observation, since existing attacks were evaluated by the Blacklight authors, we provide a systematization of stateful defenses to understand why existing stateful defense models fail. Finally, we propose a stronger evaluation strategy for stateful defenses comprised of adaptive score and hard-label based black-box attacks. We use these attacks to successfully reduce even reconfigured versions of Blacklight to as low as 0% robust accuracy.


翻译:对抗机器学习模型的白盒攻击防御被证明极其困难。近期工作提出了有状态防御,以尝试对抗更受限的黑盒攻击。这些防御通过跟踪模型查询的历史记录并拒绝那些可疑的查询来运作。现有技术的有状态防御 Blacklight 在 USENIX Security '22 中被提出,并声称可以防止 CIFAR10 和 ImageNet 数据集上近 100% 的攻击。在本文中,我们观察到,攻击者可以通过调整现有黑盒攻击的参数显著降低 Blacklight 防护的分类器的准确性(例如,在 CIFAR10 上从 82.2% 降至 6.4%)。受到这一惊人的发现启发,我们提供了有状态防御的系统化分类,以了解现有的有状态防御模型为何失败。最后,我们提出了一种更强的有状态防御评估策略,包括自适应分数和硬标签的黑盒攻击。我们使用这些攻击成功将经过重新配置的 Blacklight 降至甚至 0% 的鲁棒准确性。

0
下载
关闭预览

相关内容

在科学,计算和工程学中,黑盒是一种设备,系统或对象,可以根据其输入和输出(或传输特性)对其进行查看,而无需对其内部工作有任何了解。 它的实现是“不透明的”(黑色)。 几乎任何事物都可以被称为黑盒:晶体管,引擎,算法,人脑,机构或政府。为了使用典型的“黑匣子方法”来分析建模为开放系统的事物,仅考虑刺激/响应的行为,以推断(未知)盒子。 该黑匣子系统的通常表示形式是在该方框中居中的数据流程图。黑盒的对立面是一个内部组件或逻辑可用于检查的系统,通常将其称为白盒(有时也称为“透明盒”或“玻璃盒”)。
专知会员服务
45+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
38+阅读 · 2020年3月10日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员