The semiparametric estimation approach, which includes inverse-probability-weighted and doubly robust estimation using propensity scores, is a standard tool for marginal structural models basically used in causal inference, and is rapidly being extended and generalized in various directions. On the other hand, although model selection is indispensable in statistical analysis, information criterion for selecting an appropriate marginal structure has just started to be developed. In this paper, based on the original idea of the information criterion, we derive an AIC-type criterion. We define a risk function based on the Kullback-Leibler divergence as the cornerstone of the information criterion, and treat a general causal inference model that is not necessarily of the type represented as a linear model. The causal effects to be estimated are those in the general population, such as the average treatment effect on the treated or the average treatment effect on the untreated. In light of the fact that doubly robust estimation, which allows either the model of the assignment variable or the model of the outcome variable to be wrong, is attached importance in this field, we will make the information criterion itself doubly robust, so that either one of the two can be wrong and still be a mathematically valid criterion.


翻译:半参数估计方法包括反概率加权和双重强势估计,采用偏差分数,是基本用于因果推断的边缘结构模型的标准工具,而且正在迅速扩展和普及到不同方向。另一方面,虽然在统计分析中选择模型是不可或缺的,但选择适当的边际结构的信息标准刚刚开始开发。在本文件中,根据最初的信息标准概念,我们得出了AIC型标准。我们根据Kullback-Lebeller差异界定了一种风险函数,作为信息标准的基石,并处理一种不一定代表的线性模型的一般因果推断模型。要估计的因果影响是一般人群中的结果,如对治疗的平均治疗效果或对未治疗者的平均治疗效果。鉴于双重有力的估计使分配变量模型或结果变量模型都是错误的,因此,在这个领域,我们将使信息标准本身具有双重性强健性,因此,两种标准中的一种标准都可能是错误的,而且仍然是有效的数学标准。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
因果推断,Causal Inference:The Mixtape
专知会员服务
106+阅读 · 2021年8月27日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月29日
Arxiv
0+阅读 · 2021年12月27日
Arxiv
4+阅读 · 2021年10月19日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员