We consider the conditional treatment effect for competing risks data in observational studies. While it is described as a constant difference between the hazard functions given the covariates, we do not assume specific functional forms for the covariates. We derive the efficient score for the treatment effect using modern semiparametric theory, as well as two doubly robust scores with respect to 1) the assumed propensity score for treatment and the censoring model, and 2) the outcome models for the competing risks. An important asymptotic result regarding the estimators is rate double robustness, in addition to the classical model double robustness. Rate double robustness enables the use of machine learning and nonparametric methods in order to estimate the nuisance parameters, while preserving the root-$n$ asymptotic normality of the estimators for inferential purposes. We study the performance of the estimators using simulation. The estimators are applied to the data from a cohort of Japanese men in Hawaii followed since 1960s in order to study the effect of mid-life drinking behavior on late life cognitive outcomes.
翻译:我们认为,在观测研究中,对相互竞争的风险数据来说,有条件的治疗效果是有条件的。虽然我们被描述为具有共差的危害功能之间的一种常态差异,但我们并不为共差采取特定的功能形式。我们利用现代半参数理论和两个双倍强分来计算治疗效果的有效分数:(1) 假定的治疗倾向分数和审查模式,(2) 竞争风险的结果模型。对于估计者来说,一个重要的无症状结果是,除经典模型的双强度外,还具有双倍强度。 率的双强度使得能够使用机器学习和非对称方法来估计破坏参数,同时保持估算者为预测目的的根值和零值的正常度。我们用模拟来研究估计者的表现。对夏威夷一群日本男子自1960年代以来的数据进行了估计,以研究中年饮酒行为对晚期认知结果的影响。