We consider a nonparametric version of the integer-valued GARCH(1,1) model for time series of counts. The link function in the recursion for the variances is not specified by finite-dimensional parameters, but we impose nonparametric smoothness conditions. We propose a least squares estimator for this function and show that it is consistent with a rate that we conjecture to be nearly optimal.


翻译:我们考虑的是用于时间序列的整数值GRCH(1,1,1)模型的非参数版本。 差异重现中的链接函数不是由有限维参数指定, 而是我们设置了非参数平滑条件。 我们为此函数建议一个最小方形估计符, 并显示它符合我们推测的接近最佳的速率 。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
159+阅读 · 2020年1月16日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年10月16日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员