The LINPACK benchmark reports the performance of a computer for solving a system of linear equations with dense random matrices. Although this task was not designed with a real application directly in mind, the LINPACK benchmark has been used to define the list of TOP500 supercomputers since the debut of the list in 1993. We propose that a similar benchmark, called the quantum LINPACK benchmark, could be used to measure the whole machine performance of quantum computers. The success of the quantum LINPACK benchmark should be viewed as the minimal requirement for a quantum computer to perform a useful task of solving linear algebra problems, such as linear systems of equations. We propose an input model called the RAndom Circuit Block-Encoded Matrix (RACBEM), which is a proper generalization of a dense random matrix in the quantum setting. The RACBEM model is efficient to be implemented on a quantum computer, and can be designed to optimally adapt to any given quantum architecture, with relying on a black-box quantum compiler. Besides solving linear systems, the RACBEM model can be used to perform a variety of linear algebra tasks relevant to many physical applications, such as computing spectral measures, time series generated by a Hamiltonian simulation, and thermal averages of the energy. We implement these linear algebra operations on IBM Q quantum devices as well as quantum virtual machines, and demonstrate their performance in solving scientific computing problems.


翻译:LINPACK基准报告了用于解决具有密集随机矩阵的线性方程式系统的计算机的性能。尽管这项任务不是直接考虑实际应用而设计的,但自1993年清单推出以来,LINPACK基准一直用于确定TOP500超级计算机清单。我们提议,类似的基准,即量子计算机量子计算机基准,可以用来测量量子计算机的整个机器性能。LINPACK基准的成败应被视为量子计算机完成解决线性代数问题(如等式线性系统)的有用任务的最起码要求。我们提议了一个称为RANPACK基准的输入模型(RACBEM),这是量子设置中密集随机矩阵的适当概括。RACBEM模型可以有效地用于测量量子计算机的整体性能,可以优化地适应任何给定量子结构,依靠黑箱量子汇编器。除了解决线性系统之外,RACBEM模型还可以用来执行一系列与许多物理应用相关的线性代代代数矩阵任务,例如模拟性能、模拟性能和直线性计算机的运行量衡模型,例如模拟的模拟模型、模拟性能测测算仪等等的量衡计算的运行。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
Top
微信扫码咨询专知VIP会员